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LElTER TO THE EDITOR 

The effect of coagulation on the diffusive spread of aerosol 
particles with a fractal structure 

S Simons 
School of Mathematical Sciences, Queen Mary College, Mile End Road, London El 4NS, 
UK 

Received 10 June 1986 

Abstract. The treatment of Simons concerning the effect of Brownian coagulation on particle 
diffusive spread is extended to cover the case of particles with a fractal structure. A novel 
result is that in the regime Kn >> 1, the particulate matter in most cases cannot diffuse 
outside a certain finite region. For 1 - D diffusion when Kn << 1, it is shown that after 
sufficiently long times the root mean square particle displacement is proportional to t" 
with n 1 0 . 3 ,  to be contrasted with the cases of coagulating compact particles and non- 
coagulating particles where n = 0.4 and 0.5, respectively. In a typical situation the diffusion 
time for fractal particles is predicted to be greater than that for compact particles by a 
factor of about five, and this suggests that experimental measurements on diffusive spread 
could provide useful evidence about the fractal structure of particles. 

Recent work by Simons (1986, hereafter referred to as S) was concerned with 
modifications to the Brownian diffusive spread of a localised aerosol arising from the 
mutual coagulation of the solid aerosol particles. It was shown there thatthe effect 
of coagulation was to yield a modified mean square particle displacement r2 which in 
general increases less rapidly with time than the linear variation characteristic of 
non-interacting particles, and that the change from linearity increased as the number 
of dimensions in which the diffusiw was occurring decreased from three to one. 
Analytic results were obtained for r2 ( r )  for one, two and three dimensions in the 
regimes Kn << 1 and Kn >> 1 where Kn is the Knudsen number 1/R ( I  being the gas 
molecular mean free path and R the particle radius). However, it was assumed in this 
work that throughout the coagulational growth of the particles the particle density 
remained constant, and that the effect of coagulation of particles with radii R ,  and R2 
was to produce a compound particle of radius ( R : +  R:)1'3. Now, recent work has 
shown that this assumption is incorrect and that aerosol particles produced by Brownian 
coagulation exhibit a fractal structure rather than the compact structure previously 
assumed (see, for example, papers in Family and Landau (1984) and Stanley and 
Ostrowsky (1986)). The effect of this is that while the general approach used in S 
remains valid, the input into the calculation of specific formulae for the particle 
diffusion coefficient and coagulation kernel as functions of particle volume requires 
modification, and as we shall see this can lead to a considerable change in the final 
forms for r2 as a function of r. 

The general form we shall take for the fractal particle structure is that given by the 
simulation work of Mountain and Mulholland (1984) and Mountain er a1 (1986). They 
found that, starting with initially identical spherules, the effect of coagulating k 
spherules was to yield a structure whose radius of gyration R,  was proportional to k6 
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where S (the reciprocal of the fractal dimensionality d )  was found by their simulation 
technique to always lie in the interval 0.53-0.59 (corresponding to d in the interval 
1.7-1.9). In order to progress with our calculation we shall model the fractal structures 
by spheres of effective radius R. If Ro and vo are the radius and volume of a single 
spherule respectively, then the above relation between R,  and k shows that, if a 
compound particle contains a total volume v of spherule material, then 

R = Ro(u/u0)'. ( 1 )  
In order to implement the approach of S for fractal particles, we now need to 

obtain expressions for the diffusion coefficient D( U )  and coagulation kernel P( U, U )  
for the cases of Kn << 1 ('large' particles) and Kn >> 1 ('small' particles). In general 
D = k T / f  wherefw is the frictional resistance to particle motion when moving through 
the gas with speed w. For a solid spherical 'large' particle of radius R the gas behaves 
as a continuum, leading to f = 6 r q R  where q is the gas viscosity. This, with R given 
by equation ( l ) ,  will therefore be the appropriate formula for our fractal model if it 
is assumed that the fluid in the interstices of the fractal structure is effectively trapped 
and moves with the particle rather than modifying the resistance to motion by moving 
relative to the particle. The conclusion of Mountain et a1 (1986) is that this assumption 
is probably justified, and we therefore take for 

At the other extreme, when Kn >> 1 ,  the resistance to motion for a single particle is 
obtained by summing the impacts on it of individual gas molecules. Following Epstein 
(1924) this gives for a single spherule of radius Ro,  f =  ~ R & - I ' ( ~ T " / ~ ) ' ' ~ (  1 f i ~ a )  
where p' and m are the gas density and molecular mass respectively and a is the 
accommodation coefficient. Now in our model, since the fractal dimensionality d is 
less than 2 there will be very little effective shielding against molecular impact of one 
spherule by another, and thus the value off we require is simply the above value times 
the number of spherules in a single particle. This gives for 

Kn >> 1 D ( v ) = - ( - )  3 mkT ''2 (3). 
8 2 r  p ' ( l + i r a ) R g  v 

We now consider appropriate expressions to use for the coagulation kernel 
P ( u ,  U). In the limit of Kn<< 1 ,  the form for solid spherical particles is 
P( U, v )  = 4 ~ [  D ( u )  + D( U ) ] [  R (  U )  + R (  v ) ] ,  obtained by considering the mutual 
diffusion of particles with radii R ( u )  and R ( v ) .  We apply this result to our fractal 
particles, using equations ( 1 )  and ( 2 )  for R and D. This gives for 

Kn<< 1 P(u, v )  = ( 2 k T / 3 q ) ( u 8  + v')(u-' + U-'). ( 4 )  
At the other extreme of Kn >> 1, P is obtained by considering the number of collisions 
between the particles, each being considered as a free particle in thermal equilibrium. 
For solid particles of radius R we have P(u,  U )  = [ 8 ~ k T p - ' ( u - ' +  v - ' ) ] ' ' * [R(u)+  
R ( v ) ] *  where p is the density of particulate matter. The first term in this product 
corresponds to a thermal velocity and will be unchanged when we consider a fractal 
structure. The second term derives from a cross-sectional area, and the R - v  relationship 
will therefore be given by equation ( 1 )  for a fractal particle. This gives for 
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On the basis of equations (2)-(5) we can now proceed to consider r2 as a function 
of t .  In view of the a s s u m p t i o n s d e  in deriving these equations we may reasonably 
expect the functional form of r 2 ( t )  that we shall obtain to be substantially correct, 
although the accuracy of the coefficients appearing in it is less certain. In support of 
this claim we may quote the results of Mountain et a1 (1986) who, having obtained 
the U and v dependence of equations (2), (4) and (5), derived from these for the case 
of spatially homogeneous coagulation the asymptotic value of p as t + 00 in the relation 
v (  t )  - t P .  Their results agreed well with those given by detailed simulation techniques. 

We begin by noting that equations (2) and (3) can both be expressed in the form 

D( v )  = p K S  (6) 
where s = 6 and 1 for 'large' and 'small' particles respectively. Further, the forms (4) 
and (5 )  both satisfy 

P(Au, A V )  = A"P(u, v )  (7)  
where cy = 0 and 26 - $  for 'large' and 'small' particles respectively. The general 
formulation and treatment of the problem then follows exactly the approach developed 
in S and yields equations for X( t )  and V( t ) ,  where Xz = r2 and V( t )  is the mean value 
of v taken over all particles at time t. If p (  = 1,2 or 3) is the number of dimensions in 
which the diffusion takes place and quantities depending on the number of dimensions 
have this number specified by the subscript p, then these equations take the form 

Here Cl-O-28, C2= 1.0, C 3 =  1.4, 4' is the total volume of spherule material in a 
column of unit cross section oriented in the direction along which diffusion occurs, 
4z is the total volume of spherule material in a slab of thickness 1/27r with faces 
parallel to the plane in which diffusion occurs and c$~ is 1/47r times the total volume 
of spherule material. p is a certain weighted mean over U and v of P ( u ,  U), given by 

P-2.7  k T / q  (Kncc  1 )  ( loa)  

From equations (8) and (9) we obtain 

d V/dX = KV'-"X'-' 

where K = C p ~ , p / 2 p p  and n = 1 - CY - s. Equation ( 1 1 )  may be readily integrated to 
give V in terms of X ,  making use of the boundary condition that at t = 0, V = V, and 
X = Xo.  Substituting this into equation (8), followed by a further integration, then 
yields t as a function of X. For arbitrary values of n this procedure can be implemented 
to give t explicitly in terms of X only for diffusion in one dimension. For that case 
we let 

and obtain 

t* = { [ A +  n(X* - l)] l i(s'n)[(~ + n)X* + n - A ]  - A'f(s '") (~  +2n - A ) } / ( s  + n ) ( s  +2n) 

(13) 
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where A =  V , " / K X ~ .  Now, the behaviour of t* as X *  increases depends on whether 
n > 0 or n < 0. For n > 0 (and bearing in mind that s > 0), it is clear that t* increases 
monotonically as X *  increases beyond 1, tending to infinity as X *  += W. Further, for 
X *  >> 1 and A we have 

which corresponds to X (  t )  CC t P  where p = 0.29-0.32 for 'large' particles. This should 
be compared with the values for p of 0.50 for non-interacting particles and 0.40 
obtained in S for coagulating compact spherical particles. On the other hand, if we 
consider the case of 'small' particles where n < 0 and n + s > 0 the behaviour of t * ( X * )  
is very different. As X *  increases, t* increases but tends to infinity as X *  + X 2  where 
X 2  = (A/lnl) + 1. This behaviour, whereby the particles take an infinite time to reach 
X *  = X z  and cannot diffuse beyond this, did not occur in S since there n was always 
positive. In order to understand the reason for this new type of behaviour we consider 
again the integration of equation (1 1). It is readily shown that this gives rise to a form 
for V ( X )  such that V +  m as X + XZ if n < 0. Once V has become infinite, the diffusion 
coefficient D (equation ( 6 ) )  drops to zero and thus the particles cannot get beyond 
X,. The physical reason for this new behaviour is that, compared with 'large' particles, 
'small' particles undergo a greater increase in coagulation during their growth ( a  - 0.6 
compared with a = 0) and a greater decrease in diffusion coefficient (s = 1 compared 
with s - 0.55). The combined effect of a + s exceeding unity is to cause V to become 
infinite at a finite value of X .  Of course, in practice this behaviour will not occur since, 
once V has increased sufficiently, the particles will have become 'large' ones for which 
X can increase without limit. However, it is clear that as long as the particles remain 
'small' X must be less than X,. 

Although for the case of two dimensions one cannot obtain an explicit form for 
X (  t ) ,  it can be shown that the qualitative behaviour is the same as in one dimension. 
Thus for 'large' particles with n > 0, it transpires that after sufficiently long times 

X (  t )  cc t1/2[ ln(~t)]-9 (15) 
where q - 0.6 and this can be compared with the result of S for compact particles 
which took the form (15) with q = 0.25. On the other hand, for 'small' particles with 
n < 0, X can only increase up to a finite value X,, which is readily shown to be given 
by X ,  = X o  exp( V o " / l n l ~ ) .  

For diffusion in three dimensions the general behaviour is somewhat different from 
that in one and two dimensions. In the latter cases for 'large' particles with n > 0, V ( X )  
increased monotonically with X and tended to infinity as X + W .  However, for the 
three-dimensional situation V ( X ) ,  while increasing with X ,  tends to a finite value V,, 
given by E =  v , " + ( n ~ / X , ) ,  as X + m .  This means that, for sufficiently large t, 
X (  t )  CC t ' '2  with a constant of proportionality corresponding to the diffusion of particles 
with constant volume V,. This behaviour is qualitatively similar to that obtained in 
S, albeit with a different value for V,. For n <O, however, the situation becomes 
slightly more complicated. Integration of equation (1 1) gives 

v,"- v" = I n ( K ( X i ' - X - ' )  (16) 
and thus V increases with X.  If ( I ~ ~ K / X ~ ) >  V,", V becomes infinite at X , =  
[ X , ' - ( V , " / l n l ~ ) ] - '  and so no diffusion can occur beyond this point. On the other 
hand, if I ~ I K / X ~ <  V," then X can increase without limit, with V remaining finite 
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throughout and tending to the value V, = [ V," - (Inl~/X,)1"" as X + CO. This corre- 
sponds to a situation similar to that for n > 0, with X( t )  a fl'* for sufficiently large t. 

Apart from our conclusion that for Kn >> 1 particulate matter in most cases cannot 
diffuse outside a certain region, the main result of this letter concerns diffusion in one 
dimension for Kn <c 1. Here we showed that, for sufficiently long times, X a  t P  with 
p = 0-30 * 0.02, in contrast with p = 0.40 for coagulating compact particles. This sug- 
gests that experimental results on diffusive spread could provide useful evidence about 
the fractal nature of coagulating particles. This suggestion is borne out by the following 
illustrative example which shows that quite large differences can exist between the 
diffusion times for fractal and compact particles even before the limiting form X a t P  
is reached. Following S we calculate the time for the value of X for particles with 
initial radius 2 x cm to increase from 1 to 2 mm. We consider both fractal particles 
built up from spherules with Ro = lop6 cm and also compact particles and take c $ ~  = 
7 x lo-'' in both cases. The above equations then predict that for the compact particles 
the mean radius only increases by about 10% during the diffusion process, the time 
for which is only a few per cent greater than that for non-coagulating particles. On 
the other hand, for the fractal particles the mean radius increases by a factor of ten 
and the diffusion time is about six times larger than that for the compact particles. 
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